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ABSTRACT 

This paper is focused on analyzing a key aspect, the management of the Graphics 

Processing Units' (GPUs) memory, which is of paramount importance when developing a 

software application that makes use of the Compute Unified Device Architecture (CUDA). 

The paper tackles important technical aspects that can affect the overall performance of a 

CUDA application such as: the optimal alignment in memory of the data that is to be 

processed, obtaining optimal memory access patterns that facilitate the retrieving of 

instructions; aligning to the L1 cache line according to its size, taking into account the 

balance achieved between single or double precision and the effect on how much memory 

is being used; joining more kernel functions into a single one in certain situations, 

benefiting from the increased speedup offered by putting into use the shared and cache 

memory, adjusting the code to the available memory bandwidth by taking into account the 

memory latency and the need to transfer data between the host and the device. 
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1. INTRODUCTION 

One of the most important technical aspects that affect the performance of most software 

applications are the memory bandwidth and latency. The memory bandwidth measures 

the quantity of data that can be transferred to or from a certain point in a certain amount of 

time. The memory latency targets the time needed for an operation to respond to a certain 

request and have the data available. In the case of the Graphics Processing Units that offer 

support for the Compute Unified Device Architecture, the appropriate management of 

these two quintessential technical aspects affects to a great extent the performance of the 

developed application.  

Many scientific articles have made determined efforts to devise optimization solutions 

that target the Compute Unified Device Architecture enabled graphics processing units 

[1], [2], [3]. The general purpose graphics processing unit (GPGPU) offers new 

possibilities to overcome the limitations of traditional processors by offering a huge 

parallel processing power potential, which can be harnessed to optimize data processing. 

Achieving data processing at high speeds with low costs is of great importance in a large 
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number of applications: in processing electronic payments [4], [5], in developing 

cryptographic algorithms [6], in implementing high-performance web solutions [7], in 

complex office solutions [8], in Artificial Neural Networks [9], [10], in Resource 

Description Framework query languages [11]. 

The classical central processing unit implements a memory model that is described in the 

literature as being linear and flat [12]. This model implies that all of the central processing 

unit’s cores have almost unrestricted access to memory, no matter where it resides. Most 

of the modern central processing units offer three levels of cache memory: L1, L2 and L3. 

Programmers who focus on developing optimization solutions for the central processing 

unit have a good knowledge of these three levels and make an extended use of their 

characteristics.  

In spite of this, there are a lot of programmers who regularly or frequently are ignoring 

these types of memory when developing their applications, mainly due to the tendency 

that has been induced in recent years by modern programming languages. These 

languages, in the desire to achieve as much abstraction as possible, have a tendency to 

detach the programmer from the hardware. Time has proven that this approach often 

results in an increased productivity, because evolved compilers deal with the task of 

abstracting, thus allowing problems to be tackled without losing precious time with this 

matter. But the current state of technology makes it mandatory to fully comprehend the 

hardware and its features in order to achieve the highest possible level of performance 

when harnessing the parallel processing power of an architecture.  

The graphics processing unit offers more types of memory that can be used to store and 

retrieve data. Each of these memory types differ in terms of performance (bandwidth, 

latency). The CUDA threads can access data from multiple memory addresses during the 

execution. Each thread contains a local private memory area. Each thread block offers a 

shared memory area accessible by all the threads within the block. The lifetime of the 

shared memory is the same with the lifetime of the thread block, in which it resides. All 

the threads have access to the same global memory. The architecture also provides two 

supplementary memory types that are read-only and are accessible by all the threads: the 

constant memory and the texture memory. The lifetime of the global, constant and texture 

memory is the same with the kernel function's lifetime [13]. 

In what concerns the memory hierarchy, each streaming multiprocessor (SM) contains a 

set of 32-bit register memory, together with a shared memory area that can be easily 

accessed by every core of the streaming multiprocessor, but it is not visible to the other 

streaming multiprocessors. The size of the shared memory varies depending on the 

graphics processor architecture and the available number of registers. Besides the shared 

memory, a streaming multiprocessor offers two levels of cache memory, one for texture 

and another one for constants [14].  

In order to improve the software performance for a CUDA developed application, the 

programmers must optimize the number of active threads and to balance their memory 

resources: the number of registers and threads used per multiprocessor, the global 

memory bandwidth and the percentage of memory allocated to each thread. When one 

develops a CUDA application, he must employ a progressive approach, programming his 
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application in the first phase using only global memory. In a second phase, he can 

consider implementing shared, constant, register and other types of memory.  

In this paper there are analyzed important technical aspects that can influence the overall 

performance of an application developed for CUDA enabled GPUs: the increased speedup 

offered by putting into use the shared and cache memory; the alignment of data in 

memory; optimal memory access patterns; aligning to the L1 cache line; the balance 

achieved between single or double precision and its effect on memory usage; joining more 

kernel functions into a single one; adjusting the code to the available memory bandwidth 

in accordance with the memory latency and the necessity to transfer data between the host 

and the device. 

In the following, the mechanism of caching data is analyzed on both the central and the 

graphics processing unit, highlighting their common characteristics as well as their main 

differences. 

2. AN ANALYSIS OF THE CACHE MECHANISM 

In the case of programs that process data sequentially, especially in the case of sequential 

programs that make extensive use of cycle operators, after a certain function has been 

called, the odds are high that in the near future the function will be used again. The 

chances are very high for certain memory locations to be used frequently for storing or 

retrieving information. The principle of locality states that it is very probable that one will 

need to access again, in a short time-frame, a certain memory address or a certain portion 

of a source code after having already accessed it once [12]. 

When compared to the processing speed of a central processing unit, the Dynamic 

Random-Access Memory (DRAM) performance lags several orders of magnitude behind. 

If there had not been for the cache memory to compensate the low speed of the DRAM, 

most part of the central processing unit’s processing power would have been wasted as 

the processor would be bound to the DRAM’s bandwidth and latency. The same situation 

stands true for the graphics processing unit as some memory processes are insubstantial 

when compared to the necessary minimum resources that can be allocated to handle them, 

thus resulting in a reduced peak memory efficiency. 

The cache memory actually consists in a type of memory that offers very high speeds and 

is situated in close proximity to the processing core. The production process of this type 

of memory is very expensive and influences the final selling price of the processor. 

Depending on the types of cache memory, the sizes and speeds can vary significantly. For 

example, the L1 cache has a size of around 16 to 64 K and offers the highest level of 

performance. This type of cache memory is assigned to a certain core of the central 

processing unit. The L2 cache's size varies between 256 and 512 K, but it operates at a 

lower speed than the L1 cache. The L3 cache has been introduced most recently, having a 

size of a few megabytes and just like the L2 cache it can be used by more processor cores 

or assigned to specific ones. On typical central processing units, the L3 cache is allocated 

among the processor cores, thus facilitating the communications between the cores at high 

speeds. 
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In the case of the CUDA-enabled GPUs, the Fermi architecture brought for the first time a 

portion of cache memory which is entirely hardware managed. This architecture also 

introduced a L1 cache associated with each streaming multiprocessor that offers the 

possibility to be managed by the programmer or automatically, by the hardware. Along 

with this L1 cache, the architecture also implemented a L2 cache that is allocated among 

the streaming multiprocessors. This addition facilitates the communication between the 

threads belonging to the same processor, not having to use the low speed global memory 

when sharing small amounts of data. The atomic operations benefit a lot from the 

introduction of this type of memory, as a homogenous value at a certain memory address 

is available to the streaming multiprocessors. Up till this type of memory was introduced 

a streaming multiprocessor had to store data into the low speed global memory and 

retrieve it afterwards in order to be certain of the cohesion among the CUDA cores.  

Developers are primarily monitoring the global memory’s bandwidth while memory 

latency is compensated on the Compute Unified Device Architecture by invoking threads 

originating in different warps. Like it has been depicted before, a CUDA device 

implements more types of memory, each type having a distinctive scope, different 

lifetimes within the application and its unique caching characteristics. The global memory 

is represented by the device’s Dynamic Random Access Memory (DRAM) and is 

especially used for transferring data among the host and the device in addition to inserting 

data and retrieving the output results of a kernel.  

The qualifier global ascertains the scope of the memory, meaning that this type of 

memory is accessible by both the device and the host system. In order to declare a 

variable as being stored in global memory, one can use the “__device__” qualifier or to 

allocate it dynamically with the instruction “cudaMalloc()”. The lifetime of this type of 

memory is equivalent to the lifetime of the application, a variable that has been declared 

using the global memory qualifier exists during the lifetime of the application. For 

devices offering support for certain compute capabilities the global memory can be stored 

in the cache memory of the chip.  

The process of grouping the threads into warps is beneficial to the processing 

performance as it optimizes the inserting and retrieving of data in global memory. Global 

memory is coalesced by the device, thus reducing the number of transactions and 

optimizing the bandwidth. Different Compute Unified Device Architectures determine 

different sizes for the memory transactions. For example, on older compute 1.x 

compatible devices the size of the coalesced memory transaction begins at 128 bytes for 

each memory access. Afterwards, this value will be cut down to 64 or 32 bytes if the 

memory area that is being accessed has a low dimension and resides in the same aligned 

block of threads, having the dimension of 32-bytes. Because this memory is not cached, it 

would have affected negatively the bandwidth if the threads had not accessed memory 

addresses that are consecutive.  

Therefore, if a programmer does not pay careful attention at how different types of 

memory are used, he risks losing most of the potential bandwidth he could have obtained 

on the graphics processing unit. In contrast with compute 1.x compatible devices, on more 

advanced CUDA architectures, the technical possibilities are enhanced. Devices based on 

the Fermi architecture retrieve memory in transactions varying in size between 32 and 128 
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bytes. It is not offered support for sizes of 64- bytes, implicitly each memory transaction 

has a 128-byte cache size. The main advantages resulting from this enhancement consist 

in the fact that strided access within the bounds of 128 bytes is cached and another 

retrieve from memory is no longer necessary. The whole CUDA programming model 

starting with the Fermi architecture has become significantly simpler than the one 

implemented by the preceding architectures. 

The number of ongoing transactions is a significant factor that affects the overall 

performance of a CUDA application. The memory transactions are queued and afterwards 

are executed one by one. This mechanism implies a consumption of the processing 

resources. It is more efficiently for a thread to perform a read of three integers in a single 

pass than to perform three separate reads. According to the official NVIDIA 

documentation, in order to reach the peak bandwidth for Kepler and Maxwell, the 

programmer has to employ several strategies. One strategy consists in filling the processor 

up with warps until the near full occupancy is reached. 

Another strategy consists in performing 64 or 128 bit reads using vector types like 

float2/int2 or float4/int4, the occupancy would be lower than in the case of the first 

strategy, but the memory bandwidth would still reach its peak. Practically this strategy 

issues less transactions of greater sizes that can be processed more proficiently by the 

equipment. The use of vector types also inserts a specific instruction-level parallelism due 

to the fact that a thread processes more elements. Nevertheless, the programmer must pay 

particular attention to the fact that the use of vector types is essentially connected with an 

alignment of 8 and 16 bytes, depending on the used data type. In [12] it is stated that 

processing four elements per thread leads to an improved performance due to a moderate 

register usage, an increased opportunity for instruction level parallelism and higher 

memory bandwidth. 

3. AN ANALYSIS OF THE LIMITING FACTORS 

The memory latency and memory bandwidth, as well as the latency existing at the 

instruction level are significant causes for capping the kernel functions performance. The 

programmer must identify exactly what causes the deficiency and solve it so that the 

performance can reach its full potential. In order to identify the key points in the code that 

must be addressed the programmer must analyze the existing arithmetic instructions.  One 

to one assignment provides satisfactory results if the outputs have a one to one 

correspondence with the inputs. After performing this analysis, if the percentage of 

processing time is spent mostly on arithmetic operations, then the application is 

arithmetically bound. However, if the overall performance remains unaffected, the 

application is memory bound [12]. 

One way of solving the issues is to use the Parallel Nsight or Nsight Eclipse Edition tool 

to profile the kernel function (Figure 1).  
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Figure 1. An example of profiling a kernel function using the Nsight Eclipse Edition 1 

By applying the Analysis function, one should inspect the report regarding the statistics of 

instructions. If the report signals that the kernel's memory pattern exhibits poor coalescing 

and the graphics processing unit has to process the instruction stream serially in order to 

offer support for scatter memory reads or writes, one has to correct these issues.  

First the programmer should try to change the allocation of the memory pattern so that the 

graphics processing unit is able to coalesce, according to the thread, the access pattern. 

The best possible case would be when the data pattern generates an access pattern that is 

column based according to the thread. If the data pattern cannot be repositioned, the 

programmer can try to modify the thread pattern by using the threads to store the data that 

is about to be processed in shared memory. By using this technique, the programmer does 

not have to worry about the process of coalescing when using the shared memory.  

Another solution consists in enlarging the dimension of the output dataset, thus obtaining 

a higher number of processed elements per thread. This technique has the potential to 

improve both the arithmetic and memory bound situations. It is best to duplicate the code 

and avoid inserting a new loop within the thread. The read instructions should be 

positioned at the beginning of the kernel function so that they have time to gather the data 

before being used. This mechanism will rise the amount of needed registers, so it is 

important to closely monitor the amount of warps that have been involved, in order to 

assure that their number is not cut down.  

In the case of arithmetic bound kernels, the programmer should analyze the generated 

Parallel Thread Execution (PTX) code. The programmer must weigh the advantages and 

                                                      
1 The Figure has been downloaded from the official Nvidia documentation site 

https://developer.nvidia.com/nsight-eclipse-edition , accessed on 09.29.2016, at 21:00. 
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disadvantages of unrolling the existing loops and he can also activate floating-point 

arithmetic on 24-bits, that can greatly improve the overall performance.  

4. AN OPTIMAL HANDLING OF THE MEMORY 

Obtaining a high level of performance in a CUDA developed application is often 

conditioned by obtaining the right memory pattern. Central processing unit applications 

have a tendency to organize the data in memory by rows. Although the latest CUDA 

architectures can handle noncoalesced memory operations, older devices cannot. The 

developer must try to obtain, for both the global and shared memory, a pattern that is 

accessed in columns by successive threads. In the case of the "cudaMalloc" function, the 

alignment process must not be performed as the function generates memory by grouping 

it in aligned blocks of 128-byte size.   

If the programmer needs to use in his application a structure that stretches over this limit, 

he can insert padding bytes/words directly into the structure or he can call the 

"cudaMallocPitch" function instead. The alignment of memory determines if there is a 

need to fetch the transactions or cache lines. There are situations when one can access a 

structure containing a certain header at the beginning and the first thread will process a 

memory address with a different offset than zero [12]. In this situations a single fetch 

instruction will not be enough to provide the data to all the 32 threads of the warp.  

Moreover, a supplementary transaction will be generated, having a 128-byte size. The 

succeeding warps will be affected by this problem like a domino effect, the whole 

memory bandwidth being reduced in half due to a single header at the beginning of the 

structure. On older devices compatible with the compute 1.x, the supplementary fetch 

instruction is simply disposed instead of being used to fill in advance the cache memory. 

A possible solution to this problem would be to explicitly store the header in a different 

memory address, thus making it possible to align the memory for subsequent operations.  

Another solution consists in the addition of padding bytes within the structure in order to 

assure the desired alignment of the header as to correspond to the 128-byte limit. If the 

structure is not being used afterwards to produce an array, the repositioning of its 

elements will suffice.  After assuring that the threads are in accordance with the optimal 

memory pattern, the bandwidth will increase significantly. Regarding the read and write 

instructions, several reads originating from the same address will provide good results 

from the performance point of view as the graphics processing unit will allocate the value 

to the following threads of the warp without having to use supplementary memory fetch 

instructions. The same cannot be stated about several write instructions to the same 

memory address, as in this case the write instructions must be serialized.  

Another practice in order to achieve optimal alignment consists in inserting a padding value 

that does not affect the outcome of the processing in any way. For example, when adding up 

values over an array, the padding with the zero value will have no effect on the final result but 

it can help to obtain the desired memory pattern and assure the optimal execution path within 

the warp. When the programmer works with bins that have a fixed size, it becomes easier to 

generate the dataset and manipulate it in columns instead of rows. In order to obtain coalesced 

operations in regards to the global memory, one can create a buffer using the shared memory. 
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An important metric that must be taken into account for when developing Compute 

Unified Device Architecture applications is represented by the ratio between the number 

of memory operations and the number of arithmetic ones. In the scientific literature, it has 

come to the conclusion that this ratio should be at least 10 to 1 [12], meaning that for each 

fetch instruction issued to the global memory there have to be processed ten or even more 

operations. These operations can be of different types, ranging from computing the arrays 

indexes, branches, evaluating conditional expressions, computing loops etc. Each of these 

operations should influence positively the final result, moreover the loop instructions that 

in most of the cases should be unrolled, otherwise they tend to consume a lot of resources 

and generate an overhead of instructions.  

From the architecture point of view, one can observe that within a streaming 

multiprocessor there are implemented special odd and even dispatchers that issue the 

warps to multiple cores. The latest Pascal GP100 streaming multiprocessor architecture 

brings significant improvements in areas such as the Compute Unified Device 

Architecture cores occupancy level, the performance per watt, thus ensuing noteworthy 

enhancements that translate in an increased overall performance when compared to 

previous architectures. The Pascal streaming multiprocessor includes 64 Compute Unified 

Device Architecture cores that have a single precision FP32 (Figure 2). The previous 

CUDA architectures incorporate 128 cores in a Maxwell streaming multiprocessor and 

192 cores in a Kepler one, in both cases the precision being FP32.  

 

Figure 2. An overview of the latest Pascal GP100 SM architecture 1 

                                                      
1 The Figure has been downloaded from the official Nvidia documentation site 

https://devblogs.nvidia.com/parallelforall/inside-pascal/ , accessed on 09.30.2016, at 14:05 
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The streaming multiprocessor of the latest Pascal GP100 architecture comprises two 

processing blocks that offer Compute Unified Device Architecture processing cores with 

32 single precision, two instruction buffers, two warp schedulers and four dispatch units, 

two per each processing block (Figure 2). Even if the streaming multiprocessor from the 

Pascal architecture contains only half the number of cores when compared to the previous 

Maxwell architecture, the Pascal architecture streaming multiprocessor preserves the 

similar size for the register file and can sustain the same level of occupancy regarding the 

thread blocks and warps. The Pascal GP100 streaming multiprocessor provides the same 

amount of registers like in the cases of Maxwell GM200 and Kepler GK110 architectures, 

but with a major difference: the Pascal architecture offers as a whole considerably more 

streaming multiprocessors, consequently putting forward more registers than the previous 

CUDA architectures had to offer. 

When developing applications targeting the Pascal Architecture, the programmer must 

make use of the fact the Pascal graphics processing unit’s threads can access far more 

registers than on previous architectures and there are more thread blocks, threads and 

warps available that can run concurrently. The higher number of streaming 

multiprocessors also determines an increased overall shared memory size and the 

aggregate bandwidth of the shared memory is in fact more than two times higher than on 

the previous Maxwell architecture. All of these aspects make the Pascal GP100 streaming 

multiprocessor more efficient when processing the source code as the scheduler can select 

from a higher number of available warps, the available shared memory bandwidth for 

each threads is considerably improved and more data can be loaded into memory.   

Table 1 depicts the main technical advantages offered by the Pascal GP100 architecture, 

implemented in the Tesla P100, when compared to the previous Maxwell GM200, 

implemented in the Tesla M40 and the Kepler GK110, implemented in the Tesla K40 

graphics card. 
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Table 1. A comparison between the technical features of the latest CUDA architectures1 

 

In contrast with the Kepler architecture, the GP100 streaming multiprocessor provides a 

plainer data path structure that can handle more efficiently the data transfers. The Pascal 

architecture offers the possibility to overlap load and store instructions far better than 

before, along with an improved scheduling process, thus delivering an increased level of 

performance with lower power consumption. There is one warp scheduler per processing 

block that can dispatch two warp instructions per clock [15]. A novel addition to the 

Pascal GP100’s Compute Unified Device Architecture cores is the facility of processing 

instructions and data that have a precision of both 16-bit and 32-bit, while the amount of 

FP16 processed operations is up to two times the throughput of FP32 operations.  

5. THE KERNEL FUSION TECHNIQUE  

When multiple kernels are running sequentially, it can often happen that one can identify 

certain elements within the kernels that can be joined together (fused). The programmer 

must be very thorough when applying this technique because the process of creating two 

kernels in series produces an implied synchronization between the two CUDA functions. 

It is a common practice, when one develops CUDA kernel functions, to divide the needed 

operations into several phases or steps. For instance, during the first step, one can 

compute the results associated with the entire dataset and during the second step the data 

can be filtered according to specific criteria.  

                                                      
1 The table has been created according to the official Nvidia documentation site 

https://devblogs.nvidia.com/parallelforall/inside-pascal/ , accessed on 09.30.2016, at 17:55 
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If the second step takes place inside a block of threads, the first phase along with the 

second one can be joined together within the same kernel function. By doing so, the 

supplementary resources, necessary to invoke the second kernel, are removed along with 

the writing instructions of the first kernel into the global memory and the succeeding 

reading instructions of the second kernel. The first kernel function has the possibility to 

store its results using the shared memory and use them in the second step of the 

processing, thus eliminating completely the need to access global memory. 

The operations that perform reductions can take advantage from this technique because 

the results produced by the subsequent steps are typically less than they were during the 

first step, as a consequence the consumption of memory bandwidth is substantially 

reduced. The rationale behind this technique’s success lies in the ability of data reuse. The 

fetching operations applied to global memory are very slow, on the average of 500 clock 

cycles. This is the reason why it is better to read bigger segments of data and store them in 

memory, preferably into faster memory types. In the Compute Unified Device 

Architecture it is better to retrieve the data in segments of up to 16 bytes per thread and 

not to use words or single bytes. After every thread has processed without errors one 

element, it is best to shift processing to two elements per thread. From this point forwards, 

one can experiment and analyze the obtained results when processing four or even six 

elements per thread. As soon as the desired data has been obtained, one must try to store it 

into the faster memory types, like the shared or register memory and re-call it as often as 

it must. 

6. CONCLUSIONS 

The management of the Graphics Processing Unit memory is essential in order to obtain a 

high level of performance when developing a CUDA application. The developer must 

take into account technical aspects that have a significant impact on the overall 

performance, such as: an analysis of the cache mechanism as to benefit from the increased 

speedup provided by the shared and cache memory; aligning the data in accordance to the 

cache memory supported by the targeted architecture; facilitate the retrieving of 

instructions through optimal memory access patterns; obtaining an optimal memory 

occupancy in accordance with the processed data types; a thorough understanding of the 

performance limiting factors and their correction; an optimal handling of the memory 

according to the processing architectures and their technical characteristics, using 

optimization techniques such as merging more kernel functions into a single one.  
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